Extracellular matrix interactions with the apical surface of vascular endothelial cells.
نویسنده
چکیده
Cultured aortic endothelial cells, like their in vivo counterparts, form highly organized, confluent monolayers of polarized epithelioid cells that secrete, exclusively at their basal surface, an extracellular matrix to which they then attach. The influence of isolated subendothelial matrix preparations on cell polarity and monolayer organization was studied by presenting fragments of the matrix to confluent bovine aortic endothelial cell cultures. The matrix particles were immediately bound to the apical aspect of the cell monolayer and induced rapid reorganization of the monolayer into cells with a fibroblastoid morphology. To determine if fibronectin, the major glycoprotein of the subendothelial matrix, could be involved in the observed apical cell surface-matrix interactions, latex beads or small discs of Nucleopore filters were coated with the glycoprotein and presented to confluent monolayers. In a fashion similar to that observed with matrix fragments, materials coated with fibronectin caused focal reorganization of the cell layer. After contact with the coated beads, the underlying endothelial cells flowed upward and spread over the entire bead, forming a canopy of confluent cells that draped the particle. Contact of confluent monolayers with the coated filters induced similar behaviour, except that monolayer reorganization into the fibroblastoid phenotype was followed by emigration of the majority of underlying cells through the pores to the upper filter surface, where they formed a new organized cell monolayer with the typical endothelial cell morphology. Thus contact of the apical surface of endothelial cells with structures to which they adhere initiates a rapid disruption of the organized cell monolayer, followed immediately by a concerted effort of the local population to re-establish both cell polarity and monolayer contiguity. The expression of this behaviour may be important during tissue remodeling that occurs in neovascularization and during interactions with thromboemboli.
منابع مشابه
Effects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells
Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nano...
متن کاملتأثیر کرایوپرزرویشن و انجماد خشک در کشت سلولهای اندوتلیال بر روی پرده آمنیون انسانی
Background & Aims: Human amniotic membrane has some specific properties making it an appropriate biomaterial for using in vascular tissue engineering. In this study, amniotic membrane was preserved with different methods. Effects of preservation on amniotic extracellular matrix and adhesion of cultured endothelial cells to membrane were compared with fresh samples of amniotic membrane. Mate...
متن کاملPolarized fibronectin secretion and localized matrix assembly sites correlate with subendothelial matrix formation.
Endothelial cells in vivo form the interface between the vascular and interstitial compartments and are strategically located to mediate vascular permeability and hemostasis. One mechanism endothelial cells use to maintain a nonthrombogenic surface is to polarize basement membrane constituents to the basolateral cell surface. In the present study, we began characterization of the mechanisms use...
متن کاملInteraction between vascular endothelial cells and vascular intimal spindle-shaped cells in vitro.
The interactions between human or bovine vascular endothelial cells and fibroblast-like vascular intimal spindle-shaped cells have been studied in vitro, using species-specific antibodies to identify the different components in mixed cultures. Pure cultures of endothelial cells grow as uniform, nonoverlapping monolayers, but this growth pattern is lost after the addition of spindle cells, proba...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 76 شماره
صفحات -
تاریخ انتشار 1985